CfP: “The Role and Benefit of Metadata Capture, Discovery and Harmonization in Survey Research”

homeHeaderLogoImage_en_US
ACSPRI Logo

This session invites presentations dealing with structured metadata in a standardized form across the data life-cycle: case studies, systems and tools for i.e. instrument design, data entry, data processing, maintaining data documentation, and capturing and storing the metadata within a repository for later re-use. Capturing metadata as early on in the survey life-cycle as possible in a structured way enhances transparency and quality, supports harmonization and comparison of studies, and enables reproducible research and reuse of survey components for other waves or surveys. Metadata management can be seen as an integrated part of the survey research process. A wide range of different products and services for different audiences can be generated on the basis of metadata like web-based information systems, traditional codebooks, command setups for statistical packages, question banks, and searching and locating of data.  Papers are invited on, but not limited to, the following topics: reuse of metadata across space, time, and studies, metadata banks such as for questions and classifications, and metadata-driven information systems, possibly using DDI Lifecycle (Data Documentation Initiative). The session is aimed at survey designers and implementers, data and metadata managers, information system managers of cross-national surveys, metadata experts, and others.

Session at the 5th Biennial ACSPRI Social Science Methodology Conference 2016
ACSPRI – Australian Consortium for Social and Political Research Incorporated
Theme: Social science in Australia: 40 years on
Conference dates: Tuesday July 19 – Friday July 22, 2016
Venue: The University of Sydney, Sydney, Australia
Deadline: Friday March 4, 2016

[via DDI-users]

Dictionary with terms for the Research Data Domain

dictionary
Screenshot: CASRAI dictionary for the Research Data Domain

The Consortia Advancing Standards in Research Administration Information (CASRAI) provides a dictionary containing terms for the Research Data Domains. Each term has a unique identifier (UUID) and a URL that can be used as references to enhance reading comprehension of documents by hyperlinking terms to their definition. The URL for each term contains a link to a Discussion page to complete the feedback loop with the community of users.

The Glossary has been developed in consultation with vocabulary experts and practitioners from a wide cross-section of stakeholder groups. It is meant to be a practical reference for individuals and working groups concerned with the improvement of research data management, and as a meeting place for further discussion and development of terms. The aim is to create a stable and sustainably governed glossary of community accepted terms and definitions, and to keep it relevant by maintaining it as a ‘living document’ that is updated when necessary.

Form other sections of the dictionary one can return to this pilot section using the top-menu item Filter by and selecting Research Data Domain. To see all terms in the CASRAI dictionary (including the RDC terms), go here: http://dictionary.casrai.org/Category:Terms

In addition to direct comments on specific terms in the Glossary CASRAI is very interested in receiving feedback about the Glossary in general. Here is a short survey: https://www.surveymonkey.com/r/Glossary_ResearchDataManagement

This section of the dictionary is developed and maintained by Research Data Canada’s (RDC) Standards & Interoperability Committee (http://www.rdc-drc.ca) in collaboration with CASRAI. It is made publicly available under a Creative Commons Attribution Only license (CC-BY).

(via [DDI-users])

Two new Stata packages -useold- and -saveascii- now available on SSC

Thanks to the SSC maintainer  Kit Baum, two new commands are available on SSC: useold and saveascii. Both deal with unicode translation in Stata 14 (or younger).

useold works as an inline replacement for Stata’s regular use command. If the version of the Stata instance executing the command is 14 or younger, then it is checked if unicode translation is necessary and, if yes, unicode translate is executed on a temporary copy of the file before opening it. The default code page of the operating system is assumed as source encoding (which might be wrong and can be overridden via option).

You can install useold with:

ssc install useold

saveascii works as an inline replacement for Stata’s regular saveold command. It implements conversion functions as presented by Alan Riley here on Statalist.If the version of the Stata instance executing the command is 14 or younger, all unicode contents (data labels, variable names, variable labels, value label names and contents, characteristics names and contents) are converted to ASCII before running saveold. The default code page of the operating system is assumed as target encoding (which might be wrong and can be overridden via option).

You can install saveascii with:

ssc install saveascii

Both packages come with help files that contain more details on how to use them.

Working with the PASS data: User Guide Examples in SPSS

MR_08-15_ENWhile the PASS Scientific Use File has been available in SPSS format since wave 1, PASS support documents for SPSS users have not been available so far. With the recent release of a new Quick Start File the PASS team now provides all the worked examples from the PASS User Guide originally done in Stata as SPSS/PASW code. This includes examples for merging household, individual, spell and weight datsets, as well as using the cross-sectional and longitudinal weights for projections to different populations.

PASS Quick Start File – Analysing the PASS data using SPSS/PASW

splitit und combival – two new Stata ados

splitit is for spell data: It splits overlapping spells within a case and leaves the data otherwise untouched. The resulting file has the fewest possible number of split spells satisfying the condition not to overlap, for a given data set.

combival is designed for exploratory and data preparation purposes: It creates variables that combine the levels of a source variable within a defined group of observations. Thus, information that is spread over several observations is compiled and displayed for each observation of the group.

To get more information or install the ado-files, use stata commands

 help splitit
 help combival

or

 ssc install splitit
 ssc install combival

These two ados, that might be useful if you do data management and data analyses, have been published on ssc by Ralf Künster (NEPS, WZB) and Klaudia Erhardt (SOEP, DIW).

Save the date: EDDI2015 am 2./3. Dezember in Kopenhagen

Die 7. Konferenz der europäischen DDI-Nutzer_innen findet am 2. und 3. Dezember in Kopenhagen statt. Die Deadline für die Einreichung von Beiträgen ist der 6. September, der Call-for-papers wird am 22. Mai veröffentlicht. Die Konferenzwebseite enthält schon jetzt die wichtigsten Hinweise.

Big Data: Erstes DataFest Germany in Mannheim

Datafest_smallVom 20. bis 22. März 2015 fand an der Uni Mannheim das erste DataFest in Deutschland statt. Ca. 90 Studenten von verschiedenen Unis aus dem ganzen Bundesgebiet haben drei Tage lang mehrere Gigabytes an Handy-App-Daten mit Stata und R zerlegt. Ziel war es kurze Präsentationen zu erstellen mit denen sie Preise für die beste Erkenntnis, die beste Visualisierung und die beste Verwendung von zusätzlichen Daten gewinnen konnten.

Teilnehmer bei ersten DataFest Germany
Dieser Marathon ging nicht nur für die Studis sondern auch für das durchschnittliche Notebook an die Belastungs- bzw. Arbeitsspeichergrenze.

Paper: User-focused threat identification for anonymised microdata

1503-1_Page_01
Cover

When producing anonymised microdata for research, national statistics institutes (NSIs) identify a number of ‘risk scenarios’ of how intruders might seek to attack a confidential dataset. Hans-Peter Hafner, Felix Ritchie and Rainer Lenz argue in their paper “User-focused threat identification for anonymised microdata” (PDF) that the strategy used to identify confidentiality protection measures can be seriously misguided, mainly since scenarios focus on data protection without sufficient reference to other aspects of data. This paper brings together a number of findings to see how the above problem can be addressed in a practical context. Using as an example the creation of a scientific use file, the paper demonstrates that an alternative perspective can have dramatically different outcomes. (Source: Authors’ abstract)

SPSS pitfalls: Combining files with custom variable attributes

Adding custom variable-attributes is a useful feature of SPSS available since version 14 of 2005. It can be used to assign additional information to variables and store it with the survey data, e.g. metadata or paradata. However, compared to the attributes reserved by SPSS (like variable labels or value labels), user-defined attributes demand extra attention and there are some pitfalls to look out for. SPSS pitfalls: Combining files with custom variable attributes weiterlesen